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A new method for solving boundary-value problems for the wave equation [l-3] with moving boundaries is 

used to obtain a solution of a boundary-value problem with boundary conditions of three types [4]. 

THE MOST general method for solving problems of heat conduction, diffusion and wave processes with moving 
boundaries uses expansions in terms of the instantaneous natural frequencies [5]. In practical work, however, 

this method is very laborious. 

1. MATHEMATICAL FORMULATION OF THE BOUNDARY-VALUE PROBLEM 

We consider [5] the non-steady-state boundary-value problem of axially symmetric waves radiating from a 

moving surface, where they are generated by physical processes of some kind. It is required to determine a 
potential function cp that satisfies the linear wave equation under conditions of symmetry with respect to the 
space coordinate r : 
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where m = 0, 1,2, t is the time and cc, is the velocity of propagation of the perturbations. The initial data in the 
domain r-2 R. are assumed to be zero: 

cp Ir=rJ = acplat Ir=a = 0 (1.2) 

In addition, we will assume that the unknown cp satisfies a radiation condition, according to which the 
solution of Eq. (1.1) will contain only travelling waves. The solution of Eq. (1 .l) with initial data (1.2) and the 

radiation condition is 

cp (r, t) = f (P) r-m’s, to = t - (1. - R,)lc, (1.3) 

where to is the wave argument. Note that when m = 1 this solution is approximate, and valid [6] for fairly large 
values of r. A more careful analysis yields a condition for solution (1.3) to be applicable when m = 1: 

cotlRo 6 1. 
The form of the function fin (1.3) is determined by the boundary condition at the moving boundary, which 

may be of one of three types [4]: 
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g, LRttj = a (Q (type 1) 

war Id(t) - qs W (type 2) 

(arplar + a&-l cp) Ir=R(tj = 48 (t) (type 3) 

(1.4) 

(1.5) 

(1.6) 

where (Y is an arbitrary constant and R0 # 0. 
In boundary conditions of these three types the law of motion of the boundary is expressed by an arbitrary 

but continuous function of time. The function f may be interpreted as the intensity of some ad hoc point source 
placed at the origin, outside the domain of definition of cp for the boundary-value problem. The solution of 
problem (l.l)-( 1.6) will be sought in the domain t. ‘0, r> RO. Each of the three types of boundary condition 
(1.4)-( 1.6) will be considered separately. 

2. BOUNDARY CONDITION OF THE FIRST TYPE 

Solving (1.3) with condition (1.4), we obtain 

f (t - (R (t) - RI&,) = Flm” 0) 910) (2.1) 

We now use the transformation [l--3] 

‘E = t - (R (t) - R&o (2.2) 

Let t = w(k) be the solution of Eq. (2.2). Then the use of this transformation enables us to express the 
solution in the form 

f (E) = Rm’s (w (EN (2.3) 

The variable 5 in (2.2) and (2.3) is actually a new time variable. Therefore, setting 5 = to in (2.3) and 
substituting the result into (1.3), we obtain the required solution of the boundary-value problem of the first 
type: 

P (r, r) = [R (w (0)lrl”‘s q1 (uJ (Q) (2.4) 

Indeed, the function (2.4) is a solution of the wave equation, because it corresponds to the form of (1.3) and 
is a function of the wave argument. On the other hand, the construction off was determined from the boundary 
condition (1.4) specified on the moving boundary. 

Consider the special case of a boundary moving at a constant velocity: 

R (t) = R, + IQ, vg = const, 20 (P) = P/(1 - M,) 

M, = %/CO 9 R (w (to)) = R0 + v,P/(l - M,) 

Formula (2.4) then becomes 

R,,(:fM,))]m’r ql( 1 _‘R, ) 

3. BOUNDARY CONDITION OF THE SECOND TYPE 

Solving (1.3) with condition (1 S), we obtain an equation for the function f (5): 

df (El + c0m f (E) -- 
4 2 R(~(&N =- COR~‘~ (10 (EN a @J (-3) 

(2.5) 

(3.1) 
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where t = w(S) is the solution of Eq. (2.2). 
The solution of Eq. (3.1) is known; it is 

m=O 

f (6) = - cc 

(3.2) 

Substituting (3.2) into (1.3) and replacing the argument E, by the wave argument to, we obtain the required 
solution: 

In the special case of a boundary moving at a constant velocity, solution (3.3) becomes 

cp (r, t) = - c, (1 -MO) x 
r”/(l--M,I 

s 48 0) dt, m=O 

0 

X 1”/(1--M3 
f4 - 

! 1 T 
m’2 Iprnh(l-l/M.) (to) 

s 
q,(t)tJP'i(aM*) (t) dt, m = 1, 2. 

0 

Vd 
‘I, 0) = 1 + R, (1 - j&f,) * 

4. BOUNDARY CONDITION OF THE THIRD TYPE 

Solving (1.3) with condition (1.6) we obtain 

2cc -- ml2 m& 1 f (a = - COR (w (0, Ps (w ((El 

(3.3) 

(4.1) 

Using the solution of Eq. (4.1) and noting (1.3), we find the required solution: 
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(“” UJ (P)) ws” go (t) exp (- T t) dt, exp z?, m=O 

0 

cP(r, 0 = -CO (4.2) 

[ 
R (10 (to)) 

r 
]““a~~w(t~~)w’~‘+$j- [i-is dt, m=l, 2 

co dt 1 
0 

For a boundary moving at a constant velocity the solution (4.2) gives 

qs(t) exp (--tt)dt, m=O 

9 (r, t) = -co (1 - MO) ( +)m’*$m14(H-1/MJ *(to) exp ( B. ,FL Moj ) X 

t"/(l-B&) 

X S ?a (t) (P”“*MdWt) exp (- -$--) dt, m = I,2 
0 

(4.3) 

5. SOLUTION OF THE DEFINING EQUATION 

The main difficulty encountered when solving a boundary-value problem with moving boundaries by the 
non-linear transformation method is to determine the solution of the defining algebraic equation (2.2). We 
have already found an analytical solution for boundaries moving at a constant velocity va. In the more-general 
case when the law of motion has the form R(t) = Ro + vat + uo t2/2, we obtain a quadratic equation for t, whose 
solution is 

In the case of an arbitrary law of motion, but subject to the condition [RIl(cot)]2e 1, the solution of Eq. (2.2) 
may be determined by successive approximations; the first three approximations are: 

m (El = e* Rl w 
lor(E)=E +--q- 9 ,,,)=,.(l.~-f&y~ 

where R,(t) = R (5) - Ro. 
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A new approach is proposed for solving problems with moving boundaries. Assuming spherical symmetry, 

wave phenomena are considered in the case of a surface, of arbitrary initial radius, moving in a 

compressible medium at a velocity governed by an arbitrary law. Formulas suitable for solving both the 

inverse and direct problems are obtained. 

AT~EMFTS to allow for the mobility of the boundaries in wave-equation situations have hitherto been confined 
mainly to cases in which the boundary conditions are satisfied on the moving boundaries (the direct problem) 
[l, 21. The method used in [l] reduces such situations to an infinite system of first-order linear differential 
equations. In the case considered below an additional condition is specified not at the moving boundary but at a 
fixed point of the wave zone (the inverse problem), and the problem is to determine the functions of interest at 
other points, including the moving boundaries. This is to be done without knowledge of the law governing the 
variation of the boundaries, which is also to be determined. In addition, the additional condition may even be 
non-linear. 

The essence of the approach is to determine the relationship between the values of the unknown functions at 
the moving boundaries and at other points taking into account the actual delays [3]. In some cases, such as a 
moving cylindrical surface 141 or a penetrable spherical boundary (51, explicit formulas can be derived for the 
functions. 
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